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A thin layer element method is formulated to compute the dynamic response
of submerged soil. The formulation is based on Biot's equation describing
the dynamic behavior of fluid-saturated elasto-porous medium. The dynamic
response of submerged soil is computed for various cases by using the
developed formulation. The effects of submerged conditions are examined
for submerged soil deposits with a water level at and above the ground
surface. It is found that both submerged conditions and water body above the
ground surface can considerably affect the dynamic response of soil deposits.

INTRODUCTION

When the dynamic load is applied to saturated soil, pore fluid movement relative to
the soil skeleton may be induced. The transient movement and redistribution of pore fluid
can significantly affect the dynamic response soil behavior. They are generally governed
by the loading rate, soil permeability, pressure gradient and boundary conditions, resulting
in an extremely complex picture of the dynamic response behavior of submerged soil.

Biot (1962) has made a framework in the formulation of dynamic response of fluid-
filled elasto-porous medium . This formulation has been generally used for dynamic
response analysis of submerged soil and evaluated typically by either analytical solutions
obtained by solvin'g the differential equations or the numerical finite element method.
Considerable difficulty exists in obtaining analytical solutions for Biot's equation in general
and thus the solutions have been developed only for very simple conditions (e.g. Biot,

- 1956; Jones, 1961; Deresiewics, 1960; Foda and Mei, 1982). Those conditions are
generally too simple compared with those commonly encountered in the real situation.
The finite element method has been applied for the numerical evaluation of Biot's equation

(e.g. Ghaboussi and Wilson, 1973; Prevost, 1982; Simon et al., 1986; Zienkiewicz et al.,

1977). Contrary to the former approach, this approach can account for complex geometry
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and inhomogeneity without increasing the degree of difficulty and amount of computation.
However, compared with the finite element scheme applied to a single-phase medium, the
computation effort increases substantially due to the additional degrees of freedom
associated with pore fluid. Various people (e.g. Kausel and Roesset , 1975; Lysmer and
Waas, 1972; and Tajimi and Shimomura, 1976) have presented a thin layer element
method, which combines the finite element scheme and analytical solution and uses the
Rayleigh wave modes in the expression of the responses. This approach requires
computation effort far less than the regular finite element approach and yet has a capacity of
accommodating complex conditions far more than the approach with the analytical solution.
It has been applied to the dynamic response computation of a single-phase medium but
does not appear to have been applied to a fluid-saturated porous medium in published
literature W For the dynamic response analysis of a two-phase mixture, this approach
appears to be very attractive because a large computation effort is generally required in such

analysis by the reguiar finite element method.

FORMULATION
The soil medium is assumed to be an elastic porous medium saturated with pore
fluid. The average displacement of the pore fluid relative to the displacement of the solid

skeleton is defined as
w=pn(U - u) (D

where n = porosity; w = (wy, w)T in which wjis relative displacement of fluid in the j

direction; u = (uy, uz)T‘in which uj is displacements of solid skeleton in the j direction; U =
(Ux,Un)T in which Uj is the absolute displacement of the fluid in the j direction; and x and z
= Cartesian coordinates in horizontal and vertical directions, respectively. The total normal

stresses acting on a unit area of mixture is
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where 65 = {Csx, Csz, Tx,) 1 in which Osj is a normal stress in the j direction acting on the
solid skeleton over the unit area; o = (Cx, Oy, Txz) | in which cjisa total normal stress in
the j direction; ¢’ = (0x, Oz, Txz) ¥ in which oj is an effective normal stress in the j
direction; Tyz = shear stress; 1t = pore fluid pressure; and m = 1,1,0T.

The equilibrium condition of forces acting on the soil skeleton in a unit soil volume

is described as

(1-mLTo, + (1-m)p,b + 0k 'w = (1-n)p,ii - 3)

where W = dw/dt; ti = 92u/9t2; b = (by,b,)T in which bj is body force in the j direction per

unit mass; ps = density of a unit volume of the solid material in the skeleton; and

2, 2

T | ox Jz

L = 3 9 (4)
0 dz Ox

The equilibrium condition of the forces acting on the pore fluid domain in a unit volume of

soil is given by
AV - K'nw + npb = pW+ npgid _ ' (5)

where pg = density of unit volume of pore fluid; and V = (d/dx, 9/9z)T. Combining Eqgs. 3

and 5, the equilibrium condition of the pore fluid and solid skejeton mixture is expressed as

LTO' + pb = pii + pf\‘w'r (6)



where p = density of unit volume of mixture = (1-n)ps + npy. Since linear elastic
conditions are considered, body forces will be neglected hereafter.

The rate of the fluid stored in a unit volume mixture is equal to the summation of the
rate of the volume change of volumetric strain in the solid, the rate of change due to
compression of the solid by pore fluid pressure, the rate of change due to compression of
the solid by the effective stresses, and the rate of change due to compressibility of the fluid.

According to Simon et al. (1984), this is expressed as

Viw=-om + Q'ln (7

where £ = strains = (€x, €2, Yxz) 1> and o and Q are related with material properties through

K ' .
.4 -1_1 .o
R, and Q Kf + K, (8)

oa=1

where K = elastic volumetric modulus of solid; K¢ = volumetric modulus of fluid; and Kqg
= elastic volumetric modulus of solid skeleton. Substituting 7 in Eq. 7 into Eq. 2 and
using the stress-strain relationship, o' = De, the total stresses, G, can be correlated with €
and w. With € = Lu, this expression and pore fluid pressure given in Eq. 7 can be written
in a matrix form such that

D + aszmT)L oan‘VT u
{g} oaQm' L QVT {w} ®

Using 7@ and o defined in Eq. 9, Egs. 5 and 6 can be rewritten in the following

matrix form after using the relationship € = Lu

M{:} : C{ﬂW} + K} = {3} (10)
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where

{p Ps ] [0 0 ] LD + o20mmHL  aQL'mv'
M = -

Pg Py/n 0o k! - T

aQVm'L 6AY
(11)

Consider a horizontally layered submerged soil. The displacements of the medium
in the wave ﬁéld is expressed in the form of (u(x,z.t), w(x,z,1)) = (w(x), w(z))e {ot-hx) jn
which @ = circular frequency and h = wave number. Using a shape function in the z
direction and omitting the time facor, the displacements of the jth layer in the wave field are

approximately expressed by using the displacements at the upper and fower ends of the jth

layer as
[lj(X,Z) ihx Uj .
{Wj(x,z)}=e " Z(Z){w- (12)

where e U;T = (uj(x,0)T, uj(x,HpT) and el WiT = (wj(x,0)T, wj(x,Hj)T), in which
z=0 and Hj indicate respectively the upper end and lower ends of the jth layer; ; and Z(z) =
matrix containing the shape function . When linear variations of the displacements are

assumed along z, the shape function matrix Z is

_Z oz
Z(z)=[1 B’ HJI (13)

where I = 4x4 identity matrix. 1t is noted in Eq. 13 that the factor (1-2/Hj, z/H;) is simply
multiplied by the numbers in I and thus Z is a matrix with 4 rows and 8 columns.
After substituting Eq. 12 into Eq. 10, application of Galarkin's procedure to Eq. 10

results in
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U
EJ: '[ZT(KJ. - icon + Mj)Z{“J, }e-ihx dv -
=1 J |
J UJ
D JZTKJ'. Z{W}e'ih"ds =0 (14)
g ]

j=1

where J = numbers of layers; V = volume of the layer j; S = surface area of the layer j; and
K' = [Kdz. Transforming the surface integration in Eq. 14 into the volume integration

and integrating over X result in
I K| 5,7 U;
el 2 ] oLy -
.1',.{2, K- i0Cy v oMy - b |- 2K 7] [dz =0 (15)
=t o

Substituting Eq. 15 into Eq. 14 and performing integration with respect to z result in the

characteristics equation in the discretized form such that

-

(hzo:j +ihB, + ‘(J{S‘;} =0

_'-.:]_ J
or
9 U
h th§§ + =
(ot +in “J{w} o (16)
where

Aa 0Oa aQa Oa
H 10a Ga 0a 0Oa
& = oQa 0a Qa Oa

i 6
Qa 0Oa Oa Oa
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0b (A-2G)b Ob Qb [0b (A-2G)b Ob Qb

11 Gb 0b 0Ob Ob 1| Gb 0Ob 0b 0Ob (17)
B;=5{0b aQdb ob Qb [~3|0b Qb 0b Qb
Ob Ob 0b 0Ob Ob Ob 0b Ob
Ge Oc Oc Oc 0a Oa Oa Oa
{ | 0c Ac 0coQct  Hil0a 0a 0a Oa
ﬂzﬁ Oc 0c Oc Oc | ¥ 1@Z1 0a 0a k'a Oa
11 0c aQe Oc Qc 0a 0a 02 ka

pa 0a pa Oa

H| Oa pa Qa pa
W21 P Oa p,/na Oa
0a pa Oa py/na

in which A = A + 2G +0:2Q; and

N R 18)

Wave numbers, h, and their associated mode shape vectors, (daT, (I)WT)T, can be

determined by solving the characteristic equation Eq. 16. Since the fluid pressure is an all

around equal pressure, there is a constraint between the freedoms associated with wy and

w,, and thus the total degree of freedoms for J layers is 3J instead of 47, This results in 3J

non-zero conjugate pairs and J zero conjugate pairs in eigenvalues computed from Eq. 16.

In order to satisfy the wave scattering conditions, only those with the plus sign in the
imaginary part are selected among the conjugate pairs. Then, the displacements of the

submerged layered-soil is expressed along x at the nodal points as

31 . [ty
tweey - Moo

s=1

and thus the displacements within the jth layer as
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=7 s 19
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where (¢uT, §wT)sT = sth eigenvector in which ¢y and $y = vectors of size 2J ; yj and
¢wj = vectors containing the values at the locations corresponding the jth layer in ¢, and
¢+, respectively; hg = sth eigenvalue; and o = sth mode participation factor. Then, using
Eqgs. 9 and 19 together with Eq. 13, the stresses and pore fluid pressure at the middle of the

jth layer are

{Gj(x, O'SHj)} O inx {%} N ihx {%j} (20)
=-iA, Y he ° B. :
m(x, 0.5H)) T JSZ; € Oyl 7 J;e %) s
where
A A 000QaQ 0 0 —
A - 1|A2GA2G0 0 0QoQ 0 O
j=%1 0 0 GG 0 0 00
aQ Q@ 0 0 Q Q 0 0
(21)

0 0-(A-2G)(A-2G) 0 0 -aQ oQ
110 0 -A A 0 0 -aQ oQ
Bi=gq |GG o o 00 0 0
100 -aQ Q@ 0 0 Q Q
A vertical cut is considered at x=0 in a layered soil. After substituting Eqs. 13 and

19 into Eq. 9, the nodal forces acting on the vertical cut of the jth layer for x>0 can be

obtained as

P o

Xj 3J 9. 3] b .

P il =iE ” . Y 22
{sz} - E"Eh“’as{"wn}f F’Zas{|’wzj}s @2
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0
: i | Aa 0a cQa 2 1
E.=-!| Oa Ga 0a with az[l 2} (23)
i 6 loQa 0a Qa
0b (A-2G)b aQb 1 -1
J2{0b aob Qb

Therefore those of the entire layered system for x2() are

B u u
{ P?} = Eihsas{z‘vx}s +F ias{ :“'7}8

B; s=l s=1

or

Px
{Pz} =(Ep+Fe)a (24)
P'Jt

where ¢ and ¢" = 3J x 3J matrices containing the vectors hs(tjuT,waT)sT and
(QuT,qsz)sT at the sth column, respectively; and @ = vector containing o at the sth
location. Given external loads at x=0, (Qy, Qz Qg), the participation factors, o, can be
determined from Eq. 24 with (Px, Pz, Px) = (Qx, Qz, Qr)/2 and (Px, Py, Pr) = (Qx,
Q.. Qx) for the soil medium extending respectively throu gh -o00 <X +oo and 0 X< 4oo.
With those participation factors, the displacements can be determined from Eq. 19 and the

stresses and pore pressure from Eq. 20.
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It is noted that , when the layer is made of fluid only, Eq. 10 and ail other

formulations can be rewritten with u = 0, k = s, n = 1 and Q = 1/Ky. The undrained

condition corresponds to w = 0 and k = 0 in the above formulations.

COMPUTED RESULTS AND REMARKS
Effects of submerged conditions on the dynamic response of soil deposits are
examined for a homogeneous soil profiie shown in Fig. 1. The present formulation
requires dividing the soil into multi-layers for computation. In the first study, however,
only one layer is used in order to avoid complexity in the resuits and to see the essence of
coupled behavior of solid skeleton and pore fluid. Fig. 2 shows wave number dispersion
‘curves for various conditions. The imaginary and real parts of h define respectively the
wave length and the rate of decay of Rayleigh waves according to e-hx. The mode 1 and 2
denoted in the dispersion curves for dry soil are associated respectively with S-wave and
P-wave. When the soil is dry, those mode 1 and mode 2 waves are not progressive at the
frequencies below the natural frequency of the soil deposits associated respectively with S-
wave and P-wave. .Abovc those natural frequencies, they are progressive to form waves
in the x direction. When the condition is submerged and undrained, the high pore fluid
stiffness increases the P-wave velocity and therefore the mode 2 wave does not propagate
until the frequency substantially higher than that for dry soil. When this mode wave is not
progressive, the displacements decay somewhat more quickly with distance than those for
the dry condition . The pore fluid stiffness affects the S-wave velocity very little and
therefore the natural frequecies of the soil associated S-waves, When the condition is
submerged and drained, one additional mode exists in this case as seen in Figs. 2¢ and 2d
because of the additional degree of the freedom due to the fluid motion. In. the case k =
10-3 my/s, the first and second mode waves are very similar to those observed for the
undrained condition, but the third mode wave is a progressive wave at any frequency and

decays very quickly with x . As is seen in Fig. 3, the fluid motion relative to the solid
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motion in the third mode is rather independent of permeability, whereas those in the other
two modes decrease with decreasing permeability. When the relative fluid motions are
large, a strong coupling develops between the pore fluid and soil skeleton. As a result, the
dispersion curves associated with modes 1 and 2 are significantly affected by the coupling
and thus the difference between the two types mbdes are not clear, as is seen for k = 10-1
my/s case.

It is assumed that a vertica] impermeable wall penetrates through the soil deposits at
x = 0 and is subjected to either a vertical or lateral concentrated harmon ic load at the
Jocation of the ground surface. For simplicity, the wall is assumed to be massless and
completely flexible. Ground displacements caused by vibration of the wal} are computed

along the ground surface by using the above computed wave numbers and mode shapes
and are shown in Fig. 4 for wH/vs = 2. The horizontal and vertical motions are uncoupled
with each other for dry soil with v = .25 and are governed respectively by the first mode
and second mode waves. Therefore, according to the real and imaginary parts of hg at
oH/vg = 2 in Fig. 2a, the vertical displacements monotonically decay with distance x
because of no real part hg in the first mode, whereas horizontal displacements form a wave
pattern with the wave length defined by the real part of the first mode wave hs. When the
soil is submerged, the horizontal and vertical motions are coupled with each other even
with v = 0.25 and thus both horizontal and vertical motions form a wave pattern in x as
soon as the first mode wave propagates. The difference in the imaginary part of hg in the
first mode wave between the dry and submerged conditions can be clearly seen in the
difference in wave lengths along x. The amplitudes and phase shifts of the displacements
of the wall are shown in Fig. 5a at various frequencies for dry soil and submerged soil in
undrained condition. The first peaks are due to the first mode wave and are located around
the fundamental natural frequency of the soil deposits associated with S-wave (OJH/VS =
7/2). The second peaks, clearly seen in z direction displacements, are due to the second

mode wave and are located around the fundamental natural frequency of the soil deposits
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associated with P-wave (wH/vp =n/2 with vp? = (A+2G+0:2Q)/p). The difference in pore
fluid rigidity affects not only the amplitudes of the response but the location of the second
peak. It affects the location of the first peak vey little because of its association with the S-
wave. The relative fluid motions generate damping and therefore suppress the peak as
seen in Fig. 5b. As frequency increases, ho{vever, the relative fluid motions become
smaller and the difference between the undrained and drained conditions diminishes.
Contrary to this, when the motion becomes slow, there is enough time for pore fluid
diffusion and thus the submerged soil behavior is closer to that of the dry soil as frequency
decreases.

Now the soil responses to the wall motions are recomputed by dividing the soil into
10 layers (see Fig. 1), in order to see the distribution of responses along the depth. The
computed amplitudes of disptacements and pressures at the wall are shown respectively in
Figs. 6 and 7 at wH/vs = 2 for various permeabilities of the soil. It is noted that, at the
frequency considered, thie displacement responses for k = 10-1 m/s and 10-3 m/s are very
litte different respectively from the displacement responses for the dry case and the
undrained case. The lower the pcrméability, the higher the pore fluid pressure is induced
due to more difficulty in pore fluid diffusion. In addition, free drainage at the ground
surface affects the distribution of pore fluid pressure giving further complexity in the
porewater pressure in the soil. The pore fluid is far stiffer compared with the soil skeleton
stiffness and thus the soil responses along the depth are affected by the difference in
permeability as seen in Figs 6 and 7.

Three different conditions are considered as shown in Fig. 8, for a
nonhomogeneous soil profile identical to that shown in Fig. 1: they include dry soil (case
A), submerged soil with water level at the ground surface (case B) and submerged soil
with water level above the ground surface (case C). The shear wave velocities of the
inhomogeneous soil are defined so that its fundamental natural frequency is identical to

that of the homogeneous soil. Similar to the previous study, a completely flexible



massless vertical wall is assumed to be inserted in the soil and is subjected to a lateral
harmonic motion at the surface of the soil. Both the soil and the water above the soil is
divided into 5 layers each for the computation. The computed displacement amplitudes of
the wall are shown in Fig. 9 at the ground surface. Clear peaks can be observed around
the fundamental natural frequency of the soil associated with the S-wave in all three cases.
It is interesting to notice that one additional peak exists below this frequency when the
water exists above the soil. The water body above the soil affects the soil fesponse

significantly and the submerged condition again reduces the response significantly.

CONCLUSIONS

A semi-analytical method is developed for a dynamic response analysis of a fluid-
saturated porous medium. The method uses the finite element discretization only along
depth and analytical form in the lateral direction. The method is found to be numerically
very efficient for two-phase mixture problems. The pore fluid in the soil mass affécts the
dynamic response of the soil deposits by not simply increasing the stiffness of the soil but
also by coupling the soil skeleton motions with pore fluid motions. All those effects are
affected by the loading rate relative to the pore fluid diffusion rate, boundary conditions
and stress gradient._ The coupling effects are more predominant for soils with higher
permeabilities. When the permeability is low, a mode wave transmitted primarily to the
fluid is distinctly different from those primarily transmitted to the soil skeleton and decays
very quickly with distance. Under the static and drained conditions, the submerged soil
response is identical to the dry soil. Under the dyﬂn.a.mic eondition, however, the transient
pore fluid redistribution depends on the rate of loading and permeability of the soil. The
response of submerged soil is closer to the undrained conditions when the combination of
those are less favorable for pore fluid movement. The larger the pore fluid motions
relative to the soil skeleton are, the higher the damping generated. When the soil is

submerged below the water table, the water above the soil deposits can affect the dynamic
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response of the soil significantly and thus has to be taken into account in the dynamic

response analysis of submerged soil under the water.
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Fig. 7 Pressure response amplitudes at soil-wall interface along the wall
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